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ABSTRACT

Modern day electronic warfare often contains a heterogeneous mix of dis-
tributed sensors. This mix of sensors provides information about the prob-
ability of emitters being located at certain points. This discrete probability
map (DPM) must be reported to the commander or some other decision maker
in a timely fashion.

This report shows that with respect to current methods the most effective
way to transmit the DPM is through wavelet decomposition. Following an
introduction into wavelet theory we go on to discuss the specifics of the Haar
wavelet. Using a sample image, we show how to decompose data by wavelets,
specify a compression ratio, transmit a specific region of interest only and re-
construct the data from the wavelets. Having established these techniques we
give a specific example of a DPM generated by noisy sensors trying to locate
a radar from time difference of arrival, bearings and scan-rate measurements.
We conclude the report with a discussion of wavelet basis functions other than
the Haar wavelets.
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Wavelet Decomposition for Discrete Probability Maps

EXECUTIVE SUMMARY

In the context of distributed electronic warfare, which is often a complex environment
with many emitters and different types of receivers, discrete probability maps (DPM) can
be the only accurate and effective way to quantify the probability that targets are lo-
cated at particular points on a grid map. However, depending on the size and resolution
of the grid, it may not be possible to disseminate all of this information in a timely manner.

A wavelet decomposition of the DPM allows the receiver to determine what fidelity of
information they require and even in what specific region of space they require it. This
ability to select the fidelity and region of interest makes the wavelet decomposition a pow-
erful tool in a band limited dynamic environment.

This report shows how to decompose DPMs into wavelets, specify a compression ratio,
zoom in on regions of interest, and reconstruct the DPM from its wavelets. While the re-
port concentrates on Haar wavelets, the same principle applies to other families of wavelets
whose properties are summarised.
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1 Introduction

Wavelets are mathematical transformations used to represent a function or signal con-
tained in a finite domain. Wavelets are localised in both frequency and time, which makes
many functions and operators using them sparse when transformed. This sparse coding
makes wavelets a useful tool in data compression.

There are many families of wavelets, but this report will begin by examining one of the
simplest, the Haar wavelet. The Haar wavelet is the first known wavelet developed in the
early 1900’s by Alfred Haar [6]. The Haar wavelet transform allows data to be encoded
in levels of detail. An everyday example of this can been seen on Netscape’s World Wide
Web, when an image is called from a URL address, the image appears in installments,
beginning with a crude approximation and gradually adding detail until the final complete
image is displayed. This is called progressive image transmission and may be useful if the
receiver can decide on an early approximation of the image that they do not want to see
the whole image and can stop the process and move onto to something else; or if the
connection is lost, an approximation of the image has been sent, so not all the information
has been lost. The approximations of the image can also be stored using a lot less space
than the original data.

2 Wavelets

Wavelets have received much attention as they have been developed due to the fact that
they are useful at representing diverse classes of functions sparsely. This implies that they
can represent many functions with far fewer coefficients than the alternative of a Fourier
or polynomial basis [12]. The Discrete Wavelet Transform (DWT) technique is becoming
preferred over the Discrete Cosine Transform (DCT) as in the DWT the entire image is
transformed and compressed as a single data object rather than block by block, as with
the DCT [7]. This allows for a uniform distribution of compression errors across the entire
image. Examples of functions for which wavelets perform better than other techniques are
those which have sharp jumps or discontinuities [6], such as images where the intensity
may undergo sharp changes across an edge boundary.

A wavelet transform maps a signal f(x) into a two-dimensional function of a > 0 and
τ ∈ R, where a is the scale (it scales a function by compressing or stretching it) and τ is
the translation.

In order for the wavelet transform to be well-defined, we restrict ourselves to square
integrable functions, f(x) ∈ L2(R), meaning that

∫
f2(x) dx < ∞ (1)

A function ψ(x) is known as a (Mother) wavelet if L′(R).

1



DSTO–TN–0760

The continuous wavelet transform Ψ(a, τ) of signal f(x) is given by:

Ψ(a, τ) =
1√
a

∫
f(x) ψ

(
x− τ

a

)
dx (2)

Definition of a wavelet:

1. Admissibility, ψ(x) ∈ L2(R) such that

∫

R

|ψ̂(ω)|2
|ω| dω < ∞ (3)

2. Regularity, ψ(x) decreases rapidly1

Condition 1. implies that ψ̂(0) = 0 ⇒ ∫
R ψ(t)dt = 0

Condition 2. implies that ψ has some concentration in both space and frequency.

2.1 Derivation

An image can be reduced to a piecewise-constant function on the half open interval [0, 1).
For each nonnegative integer j, let Vj be the vector space of piecewise constant functions on
[0, 1), with constant pieces over each of the 2j equal subintervals. So every one-dimensional
image with 2j pixels is a vector in Vj . [17]
If an image is represented by a given function f(x), with a resolution level of j, where the
function fj(x) approximates f(x).

fj(x) =
∑

i

cj
iφ

j
i (x) See Section 2.2 (4)

The function can be approximated at the next resolution level j + 1 by:

fj+1(x) = fj(x) + dj(x) (5)

where dj(x) are considered to be the details of the image.
We now need to define a basis for each vector space Vj . We will call the basis functions
for the space Vj , scaling functions, which shall be denoted by φ(x).
Such that ∪j∈(Z)Vj = L2(R) and ∩j∈(Z)Vj = φ

φj
i (x) = 2j/2φ(2jx− i) (6)

The closed subspaces {Vj} of L2(R) form a nested sequence that provides successively
better approximation to L2(R), the space of square integrable functions; know as a mul-
tiresolution analysis of L2(R).

V0 ⊂ V1 ⊂ V2 ⊂ . . . (7)
1Often a wavelet is further improved with the condition that ψ and its derivatives up to r ∈ l∞(R)

decrease rapidly and
∫
R xqψ(n)dn = 0 for 0 ≤ q ≤ r. This improves a certain amount of regularity and

localisation of f .

2
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Therefore any function from subspace V0 can be represented with basis functions from V1,
and any function from V1 can be represented with basis functions from V2, and so on.

It is necessary to choose an inner product defined on the vector space Vj . In this case we
will choose the standard inner product,

〈f |g〉 =
∫ 1

0
f(x) g(x) dx for f, g ∈ Vj (8)

Now we can define a new vector space Wj as the orthogonal complement of Vj in Vj+1,
ie Vj+1 = Vj ⊕Wj . The wavelets in Wj are a way of representing the parts of a function
in Vj+1 that cannot be represented in Vj .
A collection of linearly independent functions ψj

i (x) spanning Wj are called wavelets.
These basis functions have two important properties: [19]

1. The basis functions ψj
i of Wj , together with the basis functions φj

i of Vj form a basis
for Vj+1.

2. Every basis function ψj
i of Wj is orthogonal to every basis function φj

i of Vj under
the chosen inner product.

2.2 Discrete Wavelet Transform

Given an input function f(x) ∈ L2(R) which is only known to a resolution level of j. An
approximation of the function f(x) on level j can be described by fj(x)

fj(x) =
∑

i

cj
iφ

j
i (x) (9)

Where
∑

i

cj
i φj

i =
∑

i

cj−1
i φj−1

i +
∑

i

dj−1
i ψj−1

i (10)

=
j−2∑

i

cj−2
i φj−2

i +
j−2∑

i

dj−2
i ψj−2

i +
j−2∑

i

dj−1
i ψj−1

i (11)

...
Because φj

i

Vj = Vj−1 ⊕Wj−1 (12)

Giving

f(x) = c0
0 φ0

0 + d0
0 ψ0

0 +
1∑

i=0

d1
i ψ1

i (x) +
2∑

i=0

d2
i ψ2

i (x) + . . . +
j−1∑

i=0

dj−1
i φj−1

i (x) (13)

Where φj
i (x) is the scaling function defined in section 2.1 and the coefficients cj

i are given
by

Scaling coefficient: cj
i =

∫
fj(x)φj

i (x)dx (14)

3
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And the coefficients dj
i are given by

Wavelet coefficient: dj
i =

∫
fj(x)ψj

i (x)dx (15)

ψj and φi are orthogonal so that, if i 6= j

∫
ψj

k φi
l dx = 0 (16)

3 The Haar Wavelet

The simplest wavelet is the Haar wavelet and can be defined on [0, 1), by:

ψj
i (x) = 2j/2ψ(2jx− i), i = 0, ..., 2j − 1 (17)

where

ψ(x) =





1 for 0 ≤ x < 1
2

−1 for 1
2 ≤ x < 1

0 otherwise
(18)

The scaling functions can be represented by

φj
i (x) = 2j/2φ(2jx− i) i = 0, ..., 2j − 1 (19)

where

φ(x) =
{

1 for 0 ≤ x < 1
0 otherwise

(20)
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Figure 1: ψ(x) and φ(x)
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3.1 Haar Wavelet Transform

To demonstrate how the Haar wavelet transform is implemented, let us consider a string of
numbers, which will represent a one-dimensional image. (The numbers have been chosen
so that fractions are avoided for simplicity).

[
8 10 6 4

]
(21)

The wavelet transform is an averaging and differencing process. Consider the pairs of
pixels (8, 10) and (6, 4), take the average of each pair, 9 and 5, and then record this in
the next line. Then record the difference of the averages from the first value of the pair
(marked in bold). This process is then applied to this new string resulting in the final
line, where the differences are just carried down. As follows:

[
8 10 6 4

]
(22)[

9 5 -1 1
]

(23)[
7 2 -1 1

]
(24)

The differences recorded to the righthand side are known as the detail coefficients. The
first number in the final string is the overall average. The recursive process of averaging
and differencing is called a filter bank.

By doing this process no information has been lost nor new information gained. The
original image can be reconstructed by recursively adding and subtracting the detail co-
efficients from the lower resolution versions.

Note that the string contains four values, 22, which means that the averaging and dif-
ferencing process is done in two steps. If the string contained eight values 23, then the
process would be done in three steps, and so on.

An advantage of transforming an image into this new string is that many of the detail
coefficients are considerably small in magnitude. Truncating or removing these smaller
coefficients gives a much sparser string which can be stored more compactly. However, by
truncating the detail coefficients, information has been lost and the original image cannot
be fully restored. This is lossy image compression.

Select a non-negative threshold value ε, if any of the detail coefficients are less than or
equal to ε, set them to zero. If ε = 0, this gives lossless compression, and we can recon-
struct the original image. If ε > 0, this gives lossy compression, only an approximation of
the image can be reconstructed.

5
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3.2 Function Representation

Using the scaling functions and wavelet functions previously defined in Section 2.
The example can again be calculated.

The original image: f(x)
[

8 10 6 4
]

f(x) = c2
0 φ2

0(x) + c2
1 φ2

1(x) + c2
2 φ2

2(x) + c2
3 φ2

3(x)
[

8 10 6 4
]

(25)

f(x) = c1
0 φ1

0(x) + c1
1 φ1

1(x) + d1
0 ψ1

0(x) + d1
1 ψ1

1(x)
[

9 5 −1 1
]

(26)

f(x) = c0
0 φ0

0(x) + d0
0 ψ0

0(x) + d1
0 ψ1

0(x) + d1
1 ψ1

1(x)
[

7 2 −1 1
]

(27)

The progressive addition of detail in equation (27) is shown in Figure 4.

The coefficients c and d are the values calculated in Section 3.1 is displayed to the right.
In equation (27) φ0

0(x) represents the overall average, ψ0
0(x) the broad detail and ψ1

0(x)
and ψ1

1(x) are the two types of finer detail possible in a function in V2.
The Haar basis for Vj with j > 2 includes these functions as well as narrower translations
of the wavelets ψ(x).
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Figure 2: The bases of V2 (φ2
i ) and V1 (φ1

i )
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i ) and W0 (ψ0

i )

6



DSTO–TN–0760

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

7 φ
0
0

0 0.5 1 1.5 2
0

2

4

6

8

10

7 φ
0
0 + 2 ψ

0
0

0 1 2 3
0

2

4

6

8

10

7 φ
0
0 + 2 ψ

0
0 −1 ψ

0
1

0 1 2 3 4
0

2

4

6

8

10

7 φ
0
0 + 2 ψ

0
0 −1 ψ

0
1 + 1 ψ

1
1

Figure 4: Adding detail to f(x) resulting in equation (27)

4 Orthonormal Basis

4.1 Orthogonality

An orthogonal basis is one where all the basis functions are orthogonal to one another with
respect to the standard norm. For the Haar basis φ0

0, ψ0
0, ψ1

0, ψ1
1, . . . are all orthogonal

to each other.

4.2 Normalisation

It is known that a basis function u(x) is normalised if 〈u|u〉 = 1
The Haar basis is normalised by the inclusion of the constant factor 2j/2 in the wavelet
and scaling functions.

φj
i (x) = 2j/2 φ(2jx− i) (28)

ψj
i (x) = 2j/2 ψ(2jx− i) (29)

The constant factor 2j/2 is chosen to ensure 〈u|u〉 = 1 for the standard inner product.
Implemented in the averaging and differencing process of Section 3.1, each set of pairs to
be averaged is divided by

√
2 instead of 2.

e.g.
a + b√

2
used instead of

a + b

2

This gives an orthonormal basis, one which is both orthogonal and normalised.

7
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5 Image Compression

The image that will be used in this example is a greyscale jpeg 256 × 256 image, down-
loaded from the internet [5]. Matlab code from Mulcahy [10] has been implemented to
perform the Haar wavelet transform and display the images. The image AnneFrank.jpg is
read into Matlab using /imread and stored as an image data array. The image of Anne
Frank (Figure 5) is represented by a 256 × 256 array of numbers, ranging from 1, which
represents black to 256, which represents white (different scales can be used). As 256 or
28 different shades of gray are used, the image is described as an 8-bit image.

original image

Figure 5: Original Image: Anne Frank

Let us just consider a small section of the image around Anne Frank’s eye to demonstrate
the process being applied to the whole image.

A =




30 25 27 31 33 30 28 32
26 25 26 27 27 25 30 47
21 30 27 25 24 27 47 86
29 31 28 25 27 39 74 131
29 30 24 26 37 67 118 169
49 42 39 51 82 123 166 188
67 63 63 81 119 159 187 188
73 75 74 87 108 127 141 143




To transform this image matrix, we need to perform the averaging and differencing process
described in section 3.1. The first row yields:




30 25 27 31 33 30 28 32
38.89 41.01 44.55 42.43 -8.89 -14.01 -11.55 -14.43
56.50 61.50 -17.61 -16.95 -8.89 -14.01 -11.55 -14.43
83.44 -26.94 -17.61 -16.95 -8.89 -14.01 -11.55 -14.43




8
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The row operations above can be described by:

row 1 A[1, :] : V3 (30)
row 2 A[2, :] : V2 ⊗W2 (31)
row 3 A[3, :] : V1 ⊗W1 ⊗W2 (32)
row 4 A[4, :] : V0 ⊗W0 ⊗W1 ⊗W2 (33)

This process is applied to all the rows in matrix A, resulting in the partially transformed
matrix:

F(A) =




83.44 −26.94 −17.61 −16.95 −8.89 −14.01 −11.55 −14.43
82.38 −30.38 −15.94 −27.73 −10.06 −11.48 −9.77 −24.45
101.47 −49.97 −15.44 −55.94 −15.06 −9.77 −12.06 −47.05
135.76 −79.26 −14.07 −88.83 −13.43 −9.48 −19.67 −70.96
176.78 −122.28 −12.78 −121.96 −12.72 −11.36 −36.54 −84.94
258.80 −172.30 −27.81 −134.54 −17.69 −24.64 −62.96 −84.32
327.74 −190.74 −45.08 −129.92 −24.92 −38.82 −77.58 −78.17
292.74 −138.24 −49.85 −93.33 −31.65 −39.84 −58.17 −59.82




This matrix is then transposed and the averaging and differencing process repeated to the
new rows, and then transformed back, to give the fully transformed matrix T =F(F(A)T ):

T =




516.88 −190.38 −2.83 −127.46 0.75 −11.25 −35.00 −48.25
−231.88 121.88 3.18 41.54 −3.25 11.25 30.00 −10.25
−35.71 36.06 −2.75 49.75 6.01 −3.54 7.07 26.52
−91.04 −12.55 9.25 −46.50 1.41 6.01 −4.24 −24.75
0.75 3.75 −0.35 9.90 2.00 −1.50 0.50 6.50
−24.25 19.25 −2.83 20.15 −3.50 −0.50 4.50 9.00
−60.00 24.00 2.83 −12.02 −4.00 5.00 5.50 −14.50
24.75 −42.25 −0.35 −16.97 3.00 −2.50 −10.50 0.50




The transformed matrix T has one overall average in the top left hand corner, and the
remaining values are detail elements. This new transformed matrix has many values which
are smaller in magnitude than any of the elements in A, these values represent areas where
a value has similar adjacent elements.

From here the decision can be made by choice of the threshold value whether the pro-
cess will be lossless compression or lossy compression. If a threshold value ε = 0 is chosen
then the original image A can be reconstructed, by simply reversing the process. However
if a threshold value ε > 0 is chosen, such as ε = 10, all elements less than or equal to 10
are set to 0 in T , to produce the doctored matrix D:

9
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D =




516.88 −190.38 0 −127.46 0 −11.25 −35.00 −48.25
−231.88 121.88 0 41.54 0 11.25 30.00 −10.25
−35.71 36.06 0 49.75 0 0 0 26.52
−91.04 −12.55 0 −46.50 0 0 0 −24.75

0 0 0 0 0 0 0 0
−24.25 19.25 0 20.15 0 0 0 0
−60.00 24.00 0 −12.02 0 0 0 −14.50
24.75 −42.25 0 −16.97 0 0 −10.50 0




This matrix is considerably sparse. Sparse matrices can have properties which make cal-
culating their inverse much less computationally intensive. The inverse wavelet transform
is applied to D, which gives the reconstructed matrix R. This process applied to the whole
256× 256 matrix of Anne Frank gives the following output (Figure 6).

original image

(i) The original image

compressed image

(ii) The reconstructed image, ε = 10

Figure 6: The original image and the reconstructed image, with threshold ε = 10

Figure 5 contains 65536 nonzero values, hence there are no zero values in the original
matrix A. The reconstructed matrix R, with threshold ε = 10, contains 33259 nonzero
values, and therefore is 50.7492% dense. Or has a compression ratio of 1.9705 to 1.
We can change the threshold value ε to examine the quality of the reconstructed image
(Figure 7).

compressed image

(i) Threshold ε = 15 gives a compression ratio
of 2.9052 to 1, and the matrix is 34.4208% dense

compressed image

(ii) Threshold ε = 20 gives a compression ratio
of 4.2156 to 1, and the matrix is 23.7213% dense

Figure 7: Reconstructed images

10
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5.1 Linear Algebra Wavelet Transform

The process of averaging and differencing used to perform the Haar wavelet transform can
be done computationally simpler using matrix multiplication. The Haar wavelet transform
of the first row of A (from section 5) can be done by the matrix multiplication of the three
matrices B1, B2 and B3. [10]

B1 =




1√
2

0 0 0 1√
2

0 0 0
1√
2

0 0 0 − 1√
2

0 0 0
0 1√

2
0 0 0 1√

2
0 0

0 1√
2

0 0 0 − 1√
2

0 0
0 0 1√

2
0 0 0 1√

2
0

0 0 1√
2

0 0 0 − 1√
2

0
0 0 0 1√

2
0 0 0 1√

2

0 0 0 1√
2

0 0 0 − 1√
2




B2 =




1√
2

0 1√
2

0 0 0 0 0
1√
2

0 − 1√
2

0 0 0 0 0
0 1√

2
0 1√

2
0 0 0 0

0 1√
2

0 − 1√
2

0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




B3 =




1√
2

1√
2

0 0 0 0 0 0
1√
2

− 1√
2

0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Where W = B1 B2 B3 and

L(A[1, :]) =
(

29.5 −1.25 −0.75 0.75 2.5 −2 1.5 −2
)

=
(

30 25 27 31 33 30 28 32
)
W

The columns of the Bi’s are orthogonal to each other with respect to the standard in-
ner product, so that implies that each of these matrices is invertible. Therefore the in-
verse Haar wavelet transform can also easily be performed by matrix multiplication using
W−1 = B−1

3 B−1
2 B−1

1 .

For a matrix of size 2n × 2n, B1, B2, . . . , Bn are needed to perform the transform to
each vector of length 2n. To transform the whole image matrix we simply follow the same
procedure as before and transform each row but now using the linear algebra approach
and then transform each of the resulting columns.

Therefore for A of size 2n × 2n

T = ((AW )T W )T = W T AW (34)

and

A = (T T W−1)T W−1 = (W−1)T TW−1 (35)

This technique is used in Mulcahy’s [11] Matlab code utilised in Section 5.
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6 Selecting an Area of the Image

Consider an image being transmitted using the wavelet transform. First a coarse image is
transmitted, but from this approximation you can see a smaller section of the image that
you are interested in. Instead of waiting for the whole image to be transmitted, it may be
more efficient if after making a decision of the area you are interested in, that only this
section of the image is transmitted with greater resolution.

From a coarse approximation of the image displayed in Matlab, an area of interest can
be selected using getrect(fig). From this selection of an area a smaller image matrix is
defined.

compressed image

(i) An approximation of the image

zoomed image

(ii) The fully reconstructed selection

Figure 8: Selecting an area of interest from an approximation of the image

NEW image

Figure 9: The area of interest (full resolution) displayed within coarse image

The rest of the inverse wavelet transform can simply be applied to this new smaller image
matrix. It is no longer required to send the rest of the details of the entire image.

12
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6.1 Discrete Probability Maps

A wavelet decomposition of the DPM allows the receiver to determine the detail or resolu-
tion of information they require and even a specific section of the image that they require.
By following the procedure applied to the image of Anne Frank (Figure 5), the DPM can
also be transmitted using the wavelet transform.

Figure 10 is a mesh image of the bivariate probability density function (pdf) from a
pair of sensors of three generated targets.

Figure 10: The pdf from sensor 1 of three generated targets

From the original image an approximation of the image can be made using the Haar
wavelet transform. Again, we can select an area of the image which may be of greater
interest and display the finer detail for only this area of the image.

NEW image

Figure 11: The area of interest (full resolution) displayed within coarse DPM

13
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7 Wavelet Families

There are many wavelets available to decompose and analyse both discrete and continuous
data. In general a wavelet is any function whose dilations and translations form a Riesz
basis [8] for the function space L2(R) [10]. There are infinitely many wavelet multiresolu-
tion bases for L2(R). The different wavelet families make different trade offs between how
compactly the basis functions are localised in space and how smooth they are. Within each
family of wavelets are wavelet subclasses distinguished by their number of coefficients. The
wavelets are classified within a family most often by the number of vanishing moments [6].

A wavelet has m vanishing moments if

ml =
∫ ∞

−∞
xlψ(x)dx = 0 for l = 0, . . . , m− 1 (36)

Advantages of these vanishing moments is that smooth parts of functions will have zero
wavelet coefficients associated with them [12].

The simplest wavelet is the one previously discussed, the Haar wavelet. The Haar wavelet
is the only known wavelet that is compactly supported, orthogonal and symmetric.

In image processing applications, since human vision is more tolerant of symmetric error
than an asymmetric one, it is desirable to use symmetric wavelets [14]. Also symmetric
wavelets make it easier to deal with the boundaries of an image. All orthogonal wavelets
are asymmetric, however Daubechies [3] has shown that with some modifications, it is
possible to design orthogonal wavelets that are nearly symmetric.

Note that perfect symmetry is only possible for complex wavelet filters, biorthogonal
wavelets, infinite support wavelets and multi-wavelets [14]. For many applications it is
preferred to have real filter coefficients, therefore only one choice remains for a symmetric
wavelet, the biorthogonal wavelet. For biorthogonal wavelets, there are two scaling func-
tions φ(t) and φ̃(t), and two wavelet functions ψ(t) and ψ̃(t), therefore in each case there
are two wavelet filters associated with each wavelet ψ(t) and ψ̃(t). The Cohen-Daubechies-
Feauveau wavelet (CDF) is the first family of biorthogonal wavelets.

Below is a review of some of the more commonly known wavelets:
Symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to the
the Daubechies db family. Properties of the two wavelet families are very similar. The
Mexican Hat wavelet has no scaling function and is derived from a function that is propor-
tional to the second derivative function of the Gaussian probability density function. The
Morlet wavelet has no scaling function but is explicit/complex. Biorthogonal wavelets use
two wavelets, one for decomposition and the other for reconstruction, instead of using the
same one.

14
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Table 1: Wavelet families

Wavelet Orthogonal capable of perfect
reconstruction

Symmetric
in shape

Haar X X
Daubechies (dbN) X X
Symlets X X nearly symmetric
Coiflets X X
Meyer X X
Morlet X
Mexican Hat X
Biorthogonal X X

8 Conclusion and Further Work

Discrete probability maps DMPs are an accurate and effective way of representing the
probability of emitters being at certain locations. An alternative approach to sharing the
situation is to describe the probability distribution by a sum of gaussians. The advantage
of the sums of gaussian’s approach, as opposed to DMPs is the situational awareness can
be represented by significantly less data. The disadvantage of the sum of gaussians ap-
proach is that it can lead to inaccuracy and bias [16].

In this report we have shown how discrete probability maps can be decomposed into
wavelets and distributed through a network. We showed how the data is transmitted as a
course approximation with increasing fidelity as more and more data arrives. This refin-
ing of the data allows the end user to decide when to stop the transmission or send high
fidelity data only for a specified region.

Having demonstrated the concept with Haar wavelets we plan to implement it in Dis-
tributed Electronic Warfare Situational Awareness and Response (DEWSAR) as a method
for sharing situational awareness between UAVs. If this approach is successful we plan to
investigate if any improvement can be gained by using other wavelet basis functions, such
as those mentioned in Section 7
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